Postgraduate Department of Mathematics

B.Sc. Mathematics

Programme Outcomes

PO1	Provides a more complete and logic framework in almost all areas of basic Mathematics and creates an aptitude in higher Mathematics.
PO2	The students attain a foundation in basic Mathematics and other relevant subjects to complement the core for their higher studies.
PO3	Introduces powerful tools for tackling a wide range of topics in Calculus, Theory of Equations and Geometry.
PO4	Familiarize with additional relevant mathematical techniques and other applied branches of the subject to complement the core.
PO5	A wide range of topics in almost all areas of Mathematics will be covered by the three years of graduation.

Programme Specific Outcomes

PSO1	Digest the basic concepts and techniques of logic, set theory, calculus in other areas of Mathematics and increase aptitude in higher studies and research.
PSO2	Familiarize the applications of the subject in real life situations and solve the problems logically.
PSO3	Familiarize with abstract structures and analysis which are relevant in other disciplines of Mathematics, Theory of Equations, Geometry, Number Theory and Logic.
PSO4	Develop analytic brain, logical thinking and problem solving skill.
PSO5	Understand Mathematics of nature and create a positive attitude about the environment. Awareness of the basic ideas of Human Rights.

Course Outcomes

Core Courses for B.Sc. Mathematics

SI. No	Course Code	Course Title	Course Outcomes				
SEM	SEMESTER 1						
			CO1	Familiarize sets and functions;			
		Foundations	CO2	Familiarize basic concepts of logic			
		of	CO3	Analyze truth values of statements, mathematically.			
1	MM1CRT01	Mathematics	CO4	Construct simple proofs for statements.			
			CO5	Familiarize mathematical Symbols and standard methods of proofs.			
SEM	ESTER 2		1				
		Analytic Geometry, Trigonometry and Differential Calculus		Find the equation to tangent, normal at a point on a			
			CO1	conic			
			CO2	Understand polar equation of a line, circle, tangent			
				and normal to conics			
2	MM2CRT01			Familiarize real and imaginary parts of a circular and			
			CO3	hyperbolic functions of a complex variable			
				Finding the higher order derivative of the product of			
			CO4	two functions			
			CO5	Familiarize with limits of indeterminate forms			
SEM	ESTER 3						
				A deeper knowledge of Taylor's and Maclaurin's			
			CO1	series, points of Inflexion and Curvature.			
				Conceivement of the concept of asymptotes and			
3	MM3CRT01	Calculus	CO2	envelopes			
				Deeper knowledge on partial derivatives and its			
			CO3	applications.			

				Application skills on finding the area and volume of
		-	CO4	solids of revolution and arc length of curves using
			CO4	integration.
				Attainment of techniques for finding area and
			CO5	volume by double and triple integration .
SEN	MESTER 4		1	
				A basic knowledge in differentiation of vector
				valued functions and techniques to find arc length
			CO1	and unit tangent vector, curvature and the unit normal
				vector, tangential and normal components of
				acceleration.
		.		Understanding of directional derivatives, gradient
	MM4CRT01	Vector Calculus, Theory of Numbers and Laplace Transform	CO2	vectors, tangent planes and normal lines
				A deep knowledge on line integrals and surface
			CO3	integrals and applications of Green's theorem, Stokes
			000	theorem and Divergence theorem.
			CO4	Familiarize with congruence and its properties
				Familiarize with congruence ,properties of
			CO5	congruence and Phi-function
				Conceive the concept of Laplace transform and its
			CO6	properties and apply Laplace transforms for solving
				differential equations
SEN	MESTER 5			
				Familiarize with the algebraic and order properties of
			COL	R, the absolute value of a real number and the
5			CO1	Completeness Property of R
		Mathematical		Familiarize with sequences and their Limits
	MM5CRT01	Analysis	CO2	Understand series and familiarize tests for
			CO3	
			0.05	convergence and absolute convergence
			CO4	Find limits of functions, both finite and infinite.

				Obtain an integrating factor which were start
			CO1	Obtain an integrating factor which may reduce a
				given differential equation into an exact one and
				eventually provide its solution.
				Identify and obtain the solution of Clairaut's
			CO2	equation.
				Find the complementary function and particular
			CO3	integrals of linear differential equations.
				Familiarize the orthogonal trajectory of the system of
6	MM5CRT02	Differential	CO4	curves.
-		Equations		Methods of Solutions of Differential Equations dx/P
			CO5	= dy/Q = dz/R
				Describe the origin of the partial differential equation
				and distinguish the integrals of first order linear
			CO6	partial differential equation into complete, general
				and singular integrals.
				Use Lagrange's method for solving the first order
			CO7	linear
				Familiarize with binary operations, Isomorphic
				binary structures, group and subgroups, elementary
		Abstract Algebra	CO1	properties of groups, permutations and properties of
				permutations.
				Know how to construct group tables and subgroup
			CO2	diagrams.
7			CO3	Identify different types of groups- normal subgroup,
,	MM5CRT03			simple group, cyclic group, alternating group
				Study Cayley's Theorem, Theorem of Lagrange,
			CO4	Fundamental homomorphism Theorem.
				Understand the concepts of Homomorphism and
			CO5	Isomorphism.
				Conceive the concepts of Rings, Fields, Integral
			CO6	Domains, Ideals and Factor Rings and their basic
				properties.
			1	

8	MM5CRT04	Human Rights and Mathematics for Environmental Studies	CO1	Encourage students to research, investigate how and why things happen, and make their own decisions on complex environmental issues. By developing and enhancing critical & creative thinking skills, it helps to foster a new generation of informed consumers, workers, as well as policy or decision makers. Understand how their decisions and actions affect the environment, builds knowledge and skills necessary to address complex environmental issues, as well as ways we can take action to keep our environment healthy and sustainable for the future, encourage character building, and develop positive attitudes and values. Develop the sense of awareness among the students about the environment and its various problems and to help the students in realizing the inter-relationship between man and environment for protecting nature and natural resources. Acquire the basic knowledge about environment and to inform the students about the social norms that
			CO4	provide unity with environmental characteristics and
				create positive attitude about the environment
SEN	IESTER 6	[Familiarize with Continuous Functions and Uniform
			CO1	continuity of functions
		Real Analysis	CO2	Learn to apply Mean Value Theorem, L' Hospital Rule and Taylor's Theorem
9	MM6CRT01		CO3	Understand the Riemann Integral and Riemann Integrable Functions
			CO4	Get a preliminary idea of sequence and series of functions
			CO5	Familiarize Point wise and Uniform Convergence, Interchange of Limits.

				Understand the basic concepts of graph theory and
			CO1	able to represent graphs in matrix form
			CO2	Conceive the ideas of trees and Connectivity
				Familiarize with Euler graphs and Hamiltonian
		Graph	CO3	graphs and application of graph theory in real life
10	MM6CRT02	Theory and Metric Spaces		problems
	WINDER 102			Conceive the concepts of Metric Spaces, Open sets
			CO4	and Closed Sets
				Extend the concepts like limit, convergence and
			CO5	continuity of analysis to Metric Spaces
			001	Conceivement of the concept of analytic and
			CO1	harmonic functions.
			CO2	Familiarize with the elementary complex functions
			CO2	and their properties
		Complex Analysis	CO3	A deep understanding on the theory and techniques
11	MM6CRT03		COS	of complex integration.
			COA	Familiar with the theory and application of the power
			CO4	series expansion of analytic functions.
				A deep knowledge of the theory and applications of
			CO5	residues in complex integration and calculation of
				indefinite integrals.
			CO1	Solve systems of linear equations using matrices
			CO2	Understand the theory and concepts of matrices in a
				broader sense
				Familiarize with vector spaces, subspaces, linear
			CO3	combination of vectors, spanning set, linear
12	MM6CRT04	Linear		independence and basis.
		Algebra	CO4	Conceive the concepts of Linear transformations and
			04	Linear isomorphism.
			CO5	Understand the application of matrices in vector
				spaces
			CO6	Familiarise with Eigen values, Eigenvectors and
				Eigen space.

Choice Based Core Course (Semester 6)

	Choice Dased Core Course (Semester 0)						
			CO1	Define a Euclidean space, a vector space and its			
				basis.			
				Write a given LPP in standard form and in a			
			CO2	canonical form			
				Identify a feasible solution, a basic feasible solution,			
1	MM6CBT01	Operations Research	CO3	and an optimal solution using simplex method.			
			<i></i>	Identify the Transportation Problem and formulate it			
			CO4	as an LPP and hence solve the problem			
				Determine that an Assignment problem is a special			
			CO5	case of LPP and hence solve by Hungarian method.			
			CO6	Familiarise with Concepts of Game theory.			
Ope	Open Course (Semester 5)						
		Applicable Mathematics	CO1	Prepare students of all streams, particularly from arts			
				and commerce background for their higher studies.			
			CO2	Solve logical problems for competitive examinations			
				Solve problems related to interest computing, time			
			CO3	and work, work and wages, time and distance.			
			CO4	Understand the basic concepts of trigonometry,			
1	MM5GET02			exponential and logarithmic series			
			005	Solve problems on elementary mensruation and			
			CO5	elementary algebra			
				Understand the basic concepts of differential			
				calculus, and find derivatives using basic formulas,			
			CO6	product rule, quotient rule and function of function			
				rule			
L		1					

Complementary Courses (to B.Sc. Physics/Chemistry)

SEI	MESTER 1			
				Familiarise functions of several variables and find
			CO1	domain and range of functions
		Partial Differentiation	CO2	Apply chain rule to find partial derivatives
1	MM1CMT01	Matrices, Trigonometry		Conceive the basic concepts of matrices such as rank
		and Numerical Methods	CO3	of a matrix, Characteristic equation, Characteristic
		Wiethous		roots, and characteristic vectors of a square matrix
			CO4	Solve system of Linear equations using Matrices
				Determine expansion of Trigonometric functions,
			CO5	summation of infinite series and identify real and
				imaginary parts
			CO6	Use numerical methods to solve higher order algebraic equations and transcendental equations
				algebraic equations and transcendental equations
SEI	MESTER 2			
				Use the tools of integration to find volume of solid of
			CO1	revolution, arc length and area of surface of
				revolution
			CO2	Ability to find the area of a bounded region and
				volume of a closed bounded region by applying the
				techniques of double and triple integrals
2		Integral		Recognize and solve the Ordinary Differential
2	MM2CMT01	Calculus and Differential	CO3	Equations like variable separable, Exact,
		Equations		Homogenous, Linear and Bernoulli equations.
			CO4	Method of Solutions of Differential Equations $dx/P =$
			001	dy/Q = dz/R
				Generate first order Partial Differential Equations
			CO5	and develop the ability to use Lagrange's method
			205	for solving the first order linear partial differential
				equation

SEN	SEMESTER 3					
			CO1	Differentiate vector valued functions		
				Find arc length and unit tangent vector, curvature		
			CO2	and the unit normal vector, tangential and normal		
				components of acceleration		
				Find directional derivatives, gradient vectors, tangent		
			CO3	planes and normal lines		
			CO4	Familiarize line integrals and surface integrals		
3	MM3CMT01	Vector	005	Find work, circulation and flux, conservative		
5		Calculus, Analytic	CO5	fields and potential functions		
		Geometry and Abstract	000	Apply Green's theorem, Stokes' theorem and		
		Algebra	CO6	Divergence theorem		
			007	Understand the concept of Conic sections and solve		
			CO7	problems		
				Familiarize basic concepts of Abstract Algebra like		
			CO8	Groups, Subgroups, Cyclic groups and		
				Homomorphism		
SEN	IESTER 4					
			CO1	Understand and apply Fourier series of functions		
		Fourier	CO2	Solve problems involving Fourier Series and		
		Series,		Legendre polynomials		
4	MM4CMT01	Laplace Transform		Apply Power series method to solve differential		
		and Complex	CO3	equations		
		Analysis	CO4	Familiarize Laplace transform and its properties		
			COL	Apply Laplace transforms to solve differential		
			CO5	equations		
			001	Conceivement of the concept of analytic and		
			CO6	harmonic functions.		
			007	Familiarizing with the theory and techniques of		
			CO7	complex integration		

Complementary Courses in Statistics (to B.Sc. Mathematics)

SEN	MESTER 1						
			CO1	Introducing Different aspects of data, and its collection.			
			CO2	Concepts of a statistical population and sample.			
1	ST1CMT01	Descriptive Statistics	CO3	Different methods of sampling - simple random sample, systematic, stratified and cluster.			
			CO4	Central tendency, Dispersion, skewness and kurtosis.			
			CO5	Data graphics - Ogives and Box plot.			
			CO6	Index Numbers - Laspeyer's, Paasche's and Fisher's Index Numbers.			
			CO7	Time-Reversal and Factor-Reversal tests for index numbers.			
			CO8	Cost of living index numbers.			
SEN	SEMESTER 2						
			CO1	Probability theory which includes basic concepts and important properties.			
2		Probability Theory	CO2	Random Variables - discrete and continuous and its properties.			
			CO3	Bivariate Random Variables - discrete and continuous and its properties.			
			CO4	Correlation - scatter diagram, Karl Pearson's and Spearman's rank correlation coefficients.			
			CO5	Regression - fitting of polynomial equations of degree one and two.			
			CO6	Identification of regression equations			
SEN	MESTER 3	1	1	1			
3	ST3CMT01	Probability	CO1	Mathematical Expectation and its important properties.			
5	5 SISCMIOI Probability Distributions	CO2	Probability Distributions (discrete/continuous) such as Uniform, Bernoulli, binomial, Poisson, geometric,				

			CO3 CO4	 hyper-geometric, exponential, gamma- one and two parameter(s), beta(type I and type II), Normal and its properties. Law of Large Numbers and Central Limit Theorem. Sampling Distributions including t, F, Chi-square.
SEN	MESTER 4			
			CO1	Concepts of Estimation, Estimators, and Estimates.
			CO2	Point and interval estimation.
		Statistical	CO3	Properties of good estimators.
4	ST4CMT01	Inference	CO4	Methods of Estimation.
			CO5	Cramer-Rao inequality.
			CO6	Testing of Hypotheses – basic concepts, Statistical hypotheses, null and alternate hypotheses, simple and composite hypotheses, type-I and type-II errors, size, and power of a test, p-value, Neyman-Pearson approach.
			CO7	Large Sample Tests using Neyman-Pearson approach.
			CO8	Small Sample Tests.